Charging the polluters: A pricing model for road and railway noise

Henrik Andersson Toulouse School of Economics (UT1, CNRS, LERNA), France Mikael Ögren VTI (Dept. of Environment and Traffic Analysis), Sweden

November 16, 2011

Background (I)

• More than 20% of the population within the EU being exposed to higher noise levels than are deemed acceptable (EC, 1996)

- More than 20% of the population within the EU being exposed to higher noise levels than are deemed acceptable (EC, 1996)
- Total external costs (excluding congestion costs) from transport in 2000 for the "EU 17" was 650 billion euros, which corresponded to 7.3% of the total GDP (OECD, 2006)

- More than 20% of the population within the EU being exposed to higher noise levels than are deemed acceptable (EC, 1996)
- Total external costs (excluding congestion costs) from transport in 2000 for the "EU 17" was 650 billion euros, which corresponded to 7.3% of the total GDP (OECD, 2006)
- W/o market failures no need for intervention individuals' decision would maximize social welfare

- More than 20% of the population within the EU being exposed to higher noise levels than are deemed acceptable (EC, 1996)
- Total external costs (excluding congestion costs) from transport in 2000 for the "EU 17" was 650 billion euros, which corresponded to 7.3% of the total GDP (OECD, 2006)
- W/o market failures no need for intervention individuals' decision would maximize social welfare
- This study focus on the noise externality: "Travelers" likely to only consider the noise level inside the vehicle

Background

Background (II)

• Infrastructure use charges based on short run marginal costs (SRMC) to address problem

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
 - Swedish legislation (rail infrastructure)

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
 - Swedish legislation (rail infrastructure)
- Scepticism among (some) Swedish policy makers:

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
 - Swedish legislation (rail infrastructure)
- Scepticism among (some) Swedish policy makers:
 - Negligible marginal acoustical effect

Background

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
 - Swedish legislation (rail infrastructure)
- Scepticism among (some) Swedish policy makers:
 - Negligible marginal acoustical effect
 - Monetary benefit measures unreliable

Background

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
 - Swedish legislation (rail infrastructure)
- Scepticism among (some) Swedish policy makers:
 - Negligible marginal acoustical effect
 - Monetary benefit measures unreliable
- Previous research:

Background

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
 - Swedish legislation (rail infrastructure)
- Scepticism among (some) Swedish policy makers:
 - Negligible marginal acoustical effect
 - Monetary benefit measures unreliable
- Previous research:
 - Andersson, H. and M. Ögren: 2007, 'Noise Charges in Rail Infrastructure: A Pricing Schedule Based on the Marginal Cost Principle'. *Transport Policy* **14**(3), 204–213.

Background

- Infrastructure use charges based on short run marginal costs (SRMC) to address problem
 - EU directive
 - Swedish legislation (rail infrastructure)
- Scepticism among (some) Swedish policy makers:
 - Negligible marginal acoustical effect
 - Monetary benefit measures unreliable
- Previous research:
 - Andersson, H. and M. Ögren: 2007, 'Noise Charges in Rail Infrastructure: A Pricing Schedule Based on the Marginal Cost Principle'. *Transport Policy* **14**(3), 204–213.
 - Andersson, H. and M. Ögren: 2010, 'Noise Charges in Road Infrastructure: A Pricing Schedule Based on the Marginal Cost Principle'. *Journal of Transportation Engineering* In press.

Introduction

-Objectives

Objectives

Objectives are threefold:

to design noise pricing models based on the marginal cost principle

-Objectives

Objectives

- to design noise pricing models based on the marginal cost principle
- to outline how to calculate the marginal acoustical effect from road and rail traffic noise

-Objectives

Objectives

- to design noise pricing models based on the marginal cost principle
- It outline how to calculate the marginal acoustical effect from road and rail traffic noise
- Onduct several "sensitivity tests"

-Objectives

Objectives

- to design noise pricing models based on the marginal cost principle
- It outline how to calculate the marginal acoustical effect from road and rail traffic noise
- S conduct several "sensitivity tests"
 - Traffic volume

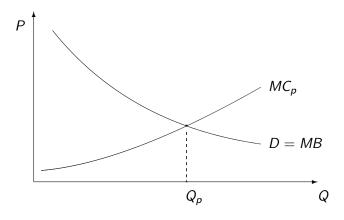
-Objectives

Objectives

- to design noise pricing models based on the marginal cost principle
- It outline how to calculate the marginal acoustical effect from road and rail traffic noise
- S conduct several "sensitivity tests"
 - Traffic volume
 - Benefits transfer

-Objectives

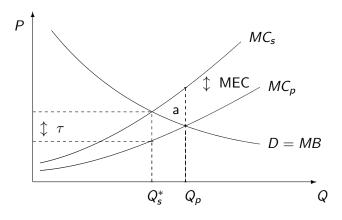
Objectives


- to design noise pricing models based on the marginal cost principle
- It outline how to calculate the marginal acoustical effect from road and rail traffic noise
- S conduct several "sensitivity tests"
 - Traffic volume
 - Benefits transfer
 - . . .

-Internalizing the external cost

-Economic efficiency and model

Marginal cost pricing and economic efficiency



-Internalizing the external cost

-Economic efficiency and model

Marginal cost pricing and economic efficiency

Internalizing the external cost

-Economic efficiency and model

The short run marginal cost (SRMC) Social cost: $\int_{-\infty}^{\infty} C(U(O, \pi, X)) \pi(A) dA$

$$S = \int_0 C(L(Q, r, X))n(r) \mathrm{d}r$$

Internalizing the external cost

-Economic efficiency and model

The short run marginal cost (SRMC) Social cost:

$$S = \int_0^\infty C(L(Q, r, X))n(r) \mathrm{d}r$$

SRMC:

$$M = \frac{\partial S}{\partial Q} = \int_0^\infty \frac{\partial C(L(\cdot))}{\partial L} \frac{\partial L(\cdot)}{\partial Q} n(r) dr$$

Internalizing the external cost

- Economic efficiency and model

The short run marginal cost (SRMC)

Social cost:

$$S = \int_0^\infty C(L(Q, r, X))n(r) \mathrm{d}r$$

SRMC:

$$M = \frac{\partial S}{\partial Q} = \int_0^\infty \frac{\partial C(L(\cdot))}{\partial L} \frac{\partial L(\cdot)}{\partial Q} n(r) dr$$

Empirical model:

Internalizing the external cost

-Economic efficiency and model

The short run marginal cost (SRMC)

Social cost:

$$S = \int_0^\infty C(L(Q, r, X))n(r) \mathrm{d}r$$

SRMC:

$$M = \frac{\partial S}{\partial Q} = \int_0^\infty \frac{\partial C(L(\cdot))}{\partial L} \frac{\partial L(\cdot)}{\partial Q} n(r) dr$$

Empirical model:

$$T = \sum_{L} c(L(\cdot)) N(L) \Delta L$$

 $c(L(\cdot)) = \partial C(L(\cdot)) / \partial L$ $N(L) = n(r)\Delta r$ $\Delta L = \partial L(\cdot) / \partial Q$

Andersson, H (TSE)

Internalizing the external cost

-Economic efficiency and model

The 3 components of the model

• Cost (monetary) component: $c(L(\cdot))$

Internalizing the external cost

-Economic efficiency and model

The 3 components of the model

• Cost (monetary) component: $c(L(\cdot))$

2 Exposed individuals: N(L)

Internalizing the external cost

-Economic efficiency and model

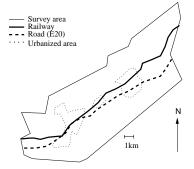
The 3 components of the model

- Cost (monetary) component: $c(L(\cdot))$
- 2 Exposed individuals: N(L)
- **3** Marginal acoustical effect: ΔL

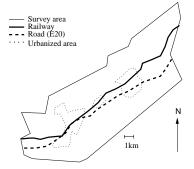
Research area and data

Lerum and data sources

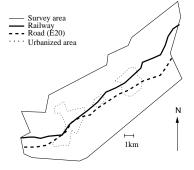
-Research area and data


Lerum and data sources

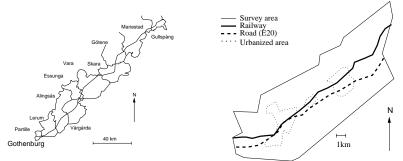
─Research area and data
└─Lerum and data sources



─Research area and data
└─Lerum and data sources



−Research area and data
Lerum and data sources



Data sources:

 Öhrström, et al. (2005): Noise levels and number of exposed individuals

—Research area and data
Lerum and data sources

Data sources:

- Öhrström, et al. (2005): Noise levels and number of exposed individuals
- Andersson et al. (2010a,b): Monetary estimates

−Research area and data └─Acoustics and exposed

Noise indicators and emitters

ullet We employ the 24 hour A-weighted equivalent level, $L_{
m AEq,24h}$

- \bullet We employ the 24 hour A-weighted equivalent level, $L_{\rm AEq,24h}$
 - $\bullet\,$ The "day, evening, night indicator", $L_{\rm DEN},$ can also be used

- We employ the 24 hour A-weighted equivalent level, $L_{\rm AEq,24h}$
 - \bullet The "day, evening, night indicator", $L_{\rm DEN},$ can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the "official" calculation method used by Swedish authorities

- We employ the 24 hour A-weighted equivalent level, $L_{\rm AEq,24h}$
 - \bullet The "day, evening, night indicator", $L_{\rm DEN},$ can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the "official" calculation method used by Swedish authorities
 - Other methods, such as HARMONOISE, can also be used

- We employ the 24 hour A-weighted equivalent level, $L_{\rm AEq,24h}$
 - \bullet The "day, evening, night indicator", $L_{\rm DEN},$ can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the "official" calculation method used by Swedish authorities
 - Other methods, such as HARMONOISE, can also be used
- Marginal noise estimated as the change in total noise level from one extra vehicle

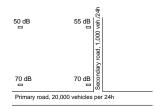
- We employ the 24 hour A-weighted equivalent level, $L_{\rm AEq,24h}$
 - \bullet The "day, evening, night indicator", $L_{\rm DEN},$ can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the "official" calculation method used by Swedish authorities
- Other methods, such as HARMONOISE, can also be used
 Marginal noise estimated as the change in total noise level
 - from one extra vehicle
 - Acoustical parameters of the vehicle

- \bullet We employ the 24 hour A-weighted equivalent level, ${\it L}_{\rm AEq,24h}$
 - $\bullet\,$ The "day, evening, night indicator", $\mathcal{L}_{\rm DEN}$, can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the "official" calculation method used by Swedish authorities
- Other methods, such as HARMONOISE, can also be used
 Marginal noise estimated as the change in total noise level from one extra vehicle
 - Acoustical parameters of the vehicle
 - Total traffic on the road

- \bullet We employ the 24 hour A-weighted equivalent level, ${\it L}_{\rm AEq,24h}$
 - $\bullet\,$ The "day, evening, night indicator", $\mathcal{L}_{\rm DEN}$, can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the "official" calculation method used by Swedish authorities
- Other methods, such as HARMONOISE, can also be used
 Marginal noise estimated as the change in total noise level from one extra vehicle
 - Acoustical parameters of the vehicle
 - Total traffic on the road
- Emitters:

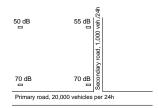
- \bullet We employ the 24 hour A-weighted equivalent level, ${\it L}_{\rm AEq,24h}$
 - $\bullet\,$ The "day, evening, night indicator", $\mathcal{L}_{\rm DEN}$, can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the "official" calculation method used by Swedish authorities
- Other methods, such as HARMONOISE, can also be used
 Marginal noise estimated as the change in total noise level from one extra vehicle
 - Acoustical parameters of the vehicle
 - Total traffic on the road
- Emitters:
 - Road: car, bus, and truck

- \bullet We employ the 24 hour A-weighted equivalent level, ${\it L}_{\rm AEq,24h}$
 - $\bullet\,$ The "day, evening, night indicator", $\mathcal{L}_{\rm DEN}$, can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the "official" calculation method used by Swedish authorities
- Other methods, such as HARMONOISE, can also be used
 Marginal noise estimated as the change in total noise level from one extra vehicle
 - Acoustical parameters of the vehicle
 - Total traffic on the road
- Emitters:
 - Road: car, bus, and truck
 - Railway: X2, X14, X60 (passenger), and Rc (freight)



- \bullet We employ the 24 hour A-weighted equivalent level, ${\it L}_{\rm AEq,24h}$
 - $\bullet\,$ The "day, evening, night indicator", $\mathcal{L}_{\rm DEN}$, can also be used
- Total and marginal noise levels calculated with the standardized *Nordic methods*, the "official" calculation method used by Swedish authorities
- Other methods, such as HARMONOISE, can also be used
 Marginal noise estimated as the change in total noise level from one extra vehicle
 - Acoustical parameters of the vehicle
 - Total traffic on the road
- Emitters:
 - Road: car, bus, and truck
 - Railway: X2, X14, X60 (passenger), and Rc (freight)
- Quiet technology: Low-noise tires and retrofitting of breaks (from cast iron to K-blocks)

Marginal acoustical change


• A difference between road and railway is that for the latter there is usually only one source of the emission

Marginal acoustical change

• A difference between road and railway is that for the latter there is usually only one source of the emission

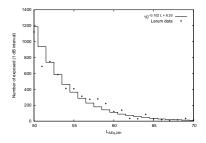
• Observation where secondary sources dominate regarding road noise have been omitted $\Rightarrow 10\%$ have been removed

Distribution of "exposed"

• For the comparison of the SRMC between modes it was assumed they occupy the same corridor - the motorway corridor

Distribution of "exposed"

- For the comparison of the SRMC between modes it was assumed they occupy the same corridor the motorway corridor
- To simplify the sensitivity analysis a functional form was fitted to the population data: $N(L) = 10^{-0.102 L+8.20}$, $L \ge 50$ (\Rightarrow error of less than 5%)


Distribution of "exposed"

- For the comparison of the SRMC between modes it was assumed they occupy the same corridor the motorway corridor
- To simplify the sensitivity analysis a functional form was fitted to the population data: $N(L) = 10^{-0.102 L+8.20}$, $L \ge 50$ (\Rightarrow error of less than 5%)

Distribution of "exposed"

- For the comparison of the SRMC between modes it was assumed they occupy the same corridor the motorway corridor
- To simplify the sensitivity analysis a functional form was fitted to the population data: $N(L) = 10^{-0.102 L+8.20}$, $L \ge 50$ (\Rightarrow error of less than 5%)

Charging the polluters Research area and data Monetary values

Preference estimates

• Monetary estimates from a hedonic property value study (Andersson et al., 2010a,b)

Charging the polluters Research area and data Monetary values

Preference estimates

- Monetary estimates from a hedonic property value study (Andersson et al., 2010a,b)
- Let *P* and **A** = [*a*₁,..., *a_n*] denote the price and the vector of attributes of a property:

Charging the polluters Research area and data Monetary values

Preference estimates

- Monetary estimates from a hedonic property value study (Andersson et al., 2010a,b)
- Let *P* and **A** = [*a*₁,..., *a_n*] denote the price and the vector of attributes of a property:

Preference estimates

- Monetary estimates from a hedonic property value study (Andersson et al., 2010a,b)
- Let *P* and **A** = [*a*₁,..., *a_n*] denote the price and the vector of attributes of a property:

$$P = P(\mathbf{A})$$

Preference estimates

- Monetary estimates from a hedonic property value study (Andersson et al., 2010a,b)
- Let *P* and **A** = [*a*₁,..., *a_n*] denote the price and the vector of attributes of a property:

 $P = P(\mathbf{A})$ $p_i = \partial P(\mathbf{A})/\partial a_i$

Preference estimates

- Monetary estimates from a hedonic property value study (Andersson et al., 2010a,b)
- Let *P* and **A** = [*a*₁,..., *a_n*] denote the price and the vector of attributes of a property:

$$P = P(\mathbf{A})$$

 $p_i = \partial P(\mathbf{A})/\partial a_i$

			REB	ASEK	
	Change		w/o health	w/ health	(w/ health)
Road	56	55	363	437	258
	66	65	495	569	568
	75	74	654	729	3,343
Railway	56	55	24	98	NA
	66	65	308	382	NA
	75	74	3,027	3,101	NA

Average exchange rate 2004: EUR 1 = SEK 9.13

Andersson, H (TSE)

Results

Noise tariffs calculated per vehicle and unit

	Speed	Passengers/	Tariff, SEK/km		
	•	• /			
Vehicle	km/h	Freight ^a	per vehicle	per unit ^b	
Passenger traffic					
Car	110	4	0.06	0.0148	
Bus	90	50	0.24	0.0048	
X2 high speed	135	310	0.37	0.0012	
X14 ĔMU	135	350	0.29	0.0008	
X60 EMU	135	370	0.07	0.0002	
Freight traffic					
Truck	90	42	0.24	0.0057	
Truck (low noise)	90	42	0.08	0.0018	
Freight train	90	1500	2.82	0.0019	
F. tr. (K-blocks)	90	1500	0.45	0.0003	
	1				

SEK price level 2004.

a: Number of passenger and metric ton of freight, respectively.

b: Per passenger and metric ton for passenger and freight traffic, respectively.

Results

Sensitivity analysis: Traffic and technology

Skille of freight per metric ton relative to a reference case of no change							
	Changes as percent and dB						
	-50%	-25%	-10%	± 0	+10%	+25%	+50%
Parameter	-1.8dB	-1.0dB	-0.4dB	± 0	+0.4dB	+1.0dB	+1.8dB
Total traffic volume							
Railway	0.988	0.994	0.997	1.000	1.003	1.006	1.011
Road	0.992	0.996	0.998	1.000	1.002	1.004	1.008
Noise level of vehicle							
Railway	0.668	0.801	0.910	1.000	1.099	1.248	1.494
Road	0.667	0.800	0.909	1.000	1.100	1.250	1.500
Noise level of fleet							
Railway	0.661	0.796	0.907	1.000	1.102	1.256	1.512
Road	0.661	0.796	0.907	1.000	1.102	1.256	1.512
Number of exposed							
Railway	0.667	0.800	0.909	1.000	1.100	1.250	1.500
Road	0.667	0.800	0.909	1.000	1.100	1.250	1.500

SRMC of freight per metric ton relative to a reference case of no change

Railway and Road refers to a 1,500 and a 60 metric ton vehicle, respectively.

Results

Sensitivity analysis: Monetary values

SRMC of freight per metric ton for binary changes relative to a reference case

Parameter	Ref.	Railway	Road
Including health comp.	1.00	1.87	1.11
Switch val. road/rail	1.00	8.28	0.12
ASEK 4ª val.	1.00	7.51	0.91
ASEK 4ª (5 dB rail bonus)	1.00	2.21	0.91

a: ASEK 4 refers to the official Swedish monetary noise values (SIKA, 2008).

Discussion I

• Standardized and official calculation methods and values used to develop "appropriate" and transparent estimation method for the SRMC

- Standardized and official calculation methods and values used to develop "appropriate" and transparent estimation method for the SRMC
- Charging model provides the right incentives

- Standardized and official calculation methods and values used to develop "appropriate" and transparent estimation method for the SRMC
- Charging model provides the right incentives
 - Vehicle type (not only mode)

- Standardized and official calculation methods and values used to develop "appropriate" and transparent estimation method for the SRMC
- Charging model provides the right incentives
 - Vehicle type (not only mode)
 - Low-noise technology

- Standardized and official calculation methods and values used to develop "appropriate" and transparent estimation method for the SRMC
- Charging model provides the right incentives
 - Vehicle type (not only mode)
 - Low-noise technology
 - "Time of day" (Andersson and Ögren, 2007)

- Standardized and official calculation methods and values used to develop "appropriate" and transparent estimation method for the SRMC
- Charging model provides the right incentives
 - Vehicle type (not only mode)
 - Low-noise technology
 - "Time of day" (Andersson and Ögren, 2007)
- Absolute levels of the SRMC estimated in this study of limited interest

- Standardized and official calculation methods and values used to develop "appropriate" and transparent estimation method for the SRMC
- Charging model provides the right incentives
 - Vehicle type (not only mode)
 - Low-noise technology
 - "Time of day" (Andersson and Ögren, 2007)
- Absolute levels of the SRMC estimated in this study of limited interest
 - Conservative estimates: Underestimation of "exposed" and health cost component not included

- Standardized and official calculation methods and values used to develop "appropriate" and transparent estimation method for the SRMC
- Charging model provides the right incentives
 - Vehicle type (not only mode)
 - Low-noise technology
 - "Time of day" (Andersson and Ögren, 2007)
- Absolute levels of the SRMC estimated in this study of limited interest
 - Conservative estimates: Underestimation of "exposed" and health cost component not included
 - Based on traffic situation and "exposed" in Lerum

Discussion

Discussion II

• Estimates show, though, that:

- Discussion

- Estimates show, though, that:
 - Insensitive to changes in traffic volume

- Discussion

- Estimates show, though, that:
 - Insensitive to changes in traffic volume
 - Sensitive to number of exposed

- Estimates show, though, that:
 - Insensitive to changes in traffic volume
 - Sensitive to number of exposed
 - Sensitive to monetary values used

- Estimates show, though, that:
 - Insensitive to changes in traffic volume
 - Sensitive to number of exposed
 - Sensitive to monetary values used
- Previous research have also shown that estimates are sensitive to:

- Estimates show, though, that:
 - Insensitive to changes in traffic volume
 - Sensitive to number of exposed
 - Sensitive to monetary values used
- Previous research have also shown that estimates are sensitive to:
 - threshold level chosen: Inhabitants within 50–55 dB interval accounted for 32% and 63% of total cost for railway and road (Andersson and Ögren, 2007, 2010)

- Estimates show, though, that:
 - Insensitive to changes in traffic volume
 - Sensitive to number of exposed
 - Sensitive to monetary values used
- Previous research have also shown that estimates are sensitive to:
 - threshold level chosen: Inhabitants within 50–55 dB interval accounted for 32% and 63% of total cost for railway and road (Andersson and Ögren, 2007, 2010)
 - discount rate chosen for estimating the monetary value (Andersson et al. 2010a)

- Estimates show, though, that:
 - Insensitive to changes in traffic volume
 - Sensitive to number of exposed
 - Sensitive to monetary values used
- Previous research have also shown that estimates are sensitive to:
 - threshold level chosen: Inhabitants within 50–55 dB interval accounted for 32% and 63% of total cost for railway and road (Andersson and Ögren, 2007, 2010)
 - discount rate chosen for estimating the monetary value (Andersson et al. 2010a)
- Important to examine the SRMC on both vehicle and passanger/ton of freight level

Discussion

Discussion III

• Acceptability will probably be low for noise charges since there is no benefit for users

- Discussion

- Acceptability will probably be low for noise charges since there is no benefit for users
 - Our model has the potential of reaching a higher level of acceptability

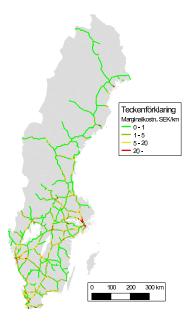
- Discussion

- Acceptability will probably be low for noise charges since there is no benefit for users
 - Our model has the potential of reaching a higher level of acceptability
 - $\bullet\,$ A more sophisticated model is also more costly $\Rightarrow\,$ BCA

- Discussion

- Acceptability will probably be low for noise charges since there is no benefit for users
 - Our model has the potential of reaching a higher level of acceptability
 - $\bullet\,$ A more sophisticated model is also more costly $\Rightarrow\,$ BCA
- The next step?

Discussion


- Acceptability will probably be low for noise charges since there is no benefit for users
 - Our model has the potential of reaching a higher level of acceptability
 - $\bullet\,$ A more sophisticated model is also more costly $\Rightarrow\,$ BCA
- The next step?

- Discussion

- Acceptability will probably be low for noise charges since there is no benefit for users
 - Our model has the potential of reaching a higher level of acceptability
 - $\bullet\,$ A more sophisticated model is also more costly $\Rightarrow\,$ BCA
- The next step? Noise maps are being created for "busy areas" in the EU, but rules of thumps for number of exposed necessary to implement a model like ours

Research in progress: Area classification

