The economic valuation of the change of forest quality in the Jizerské hory mountains: Contingent behavior model

Jan MELICHAR

Charles University Environment Center

Discussion Workshop December 8, 2006

The aim of non-market valuation study

 to place a recreational value associated with the summer trips to the Jizerske hory Mountains

 welfare change associated with public programs and air pollution

 combining actual trips with hypothetical trips ⇒ contingent behavior

Problems in Jizerske hory Mts.

- Protected Landscape Area in 1968
- 70% of forest ecosystems damaged
- decrease of the forest quality

reduction in recreational and aesthetical value

Non-market valuation of forestry

Monetary values of non-timber functions not directly known

Revealed preferences

Stated preferences

Contingent behavior

Pooled data (Alberini et Longo, 2005)

Another possibility:

Random utility framework (Adamowicz et al., 1997)

Economic foundation of TCM

Single-site travel cost model

Weak complementarity

 $(\partial U/\partial q = 0 \text{ when } r = 0)$

Utility function U = U(X, L, r)

Budget and time constraint

$$Y + w \cdot [T - L - r(t_1 + t_2)] = X + (f + P_d \cdot d) \cdot r$$

Demand function

Economic foundation of TCM, cont.

Consumer surplus
$$(P_0, q_0) = -\frac{l}{\beta_2}r_0$$

Change of consumer surplus

 $\Delta CS = CS(p_0, q_1) - CS(p_0, q_0) = -\frac{l}{\beta_2}(r_1 - r_0)$

Study area – Jizerske hory Mts.

Published by CENIA (C) Arcdata, ČÚZK, AOPK

Recreation users and season

- Winter and summer recreation activities
- **Summer** activities \Rightarrow target population
 - hiking
 - mountain biking
- Multiple recreation use:
 - separate demand function
 - both type of activities ⇒ to report # trips separately
 - is the last trip the best indicator?
- Season:
 - May-October \Rightarrow final survey in Sept., Oct.
 - TCM studies \Rightarrow peak of summer
 - is it correct to extrapolate the respondents' characteristics on the entire season?

Sampling strategy

- **On-site sampling** (9-10/2005):
 - users intercepted at the site
 - oral survey (14 minutes)
- Truncation: no observation taking 0 trips ⇒ truncated at 1 trip
- Random sample:
 - not clear entry points
 - difficult to obtained random sample of users \Rightarrow 3 refreshment points, 1 observation tower
 - possible to catch mountain bikers
 - interviewing every 3 person entering the interview site
 - to sample a person as they arrive

 Endogenous stratification: over sample more frequent users

Treatment of multiple destination and purpose trip

Multiple destination trip

- only single destination trips in JH Mts, but specific autumn period
- how is it in the peak summer, especially in more-day trips?
- adjustment of travel costs

Multiple purpose trip

2.2 % - business ⇒ dropped from analysis, 6 % culture, 12 % relatives?

how to handle it in the analysis?

day trip – all trips could be single purpose, but overnight data could be problem

Measurement of the travel costs

Objective costs

- calculated by researcher \Rightarrow Road Map
- in most TCM studies \Rightarrow only costs on fuel and upkeep
 - \Rightarrow we suppose trip made by car
- no missing estimates

Subjective costs

- expressed and perceived by respondents
- sometimes difficult to estimate
- or according to travel distance by car in kilometers
- precise estimation when trip is made by bus or by train
- cost on transport (travel, on-site) including parking fee, accommodation, number of people sharing the cost

Measurement of the travel costs, cont.

Travel costs on the last trip

- how precise is this approximation?
- one-day and more day trips mixed during season
- summer house residence ⇒ starting point for trip travel costs are then expressed for one-day trip

Time costs

- time lost traveling to and from site, time spent on site
- most studies \Rightarrow related to person's wage \Rightarrow as long as individual has flexible work
- this breaks down in many cases \Rightarrow fixed jobs and retired folks, students, unemployed persons

wage based application – from 1/3 to full wage

Measurement of on-site time

- time on travel is more or less fixed
- but time at site is chosen by individual
- sometimes is supposed to be constant across individuals
- sometimes on-site time vary across the sample using last trip data
- on-site time is endogenous (McConnell, 1992)
- two demand equations needed, one for number of trip, the second for the length of stay ⇒ bivariate models

one-day and more –day trips in JH Mts.

Design of the survey

- I. part information about respondent's visit
 - number of trips realized over the last 12 month in each season
 - information relevant to the current trip
 - motivation of the present trip
 - mode of transport
 - type of recreational activity,
 - the number of people in respondent's group
 - the length of trip
 - information about the cost of the trip
- II. part forest quality
 - rating different quality of the forest stands
 - four hypothetical programs improving or declining environmenta quality - how more or less often would visit this site if the hypothetical scenario will be implemented

- III. part socio-economic information
- IV. part debriefing questions

CURRENT STATE OF FOREST IN THE JIZERSKE HORY MOUNTAINS

HEALTHY FOREST30 %SLIGHTLY DAMAGED65 %FOREST5 %STRONGLY DAMAGED5 %FOREST

CHANGE OF FOREST QUALITY IN THE JIZERSKE HORY MOUNTAINS

FOREST IN THE JIZERSKE HORY MOUNTAINS IS COVERED

CHANGE OF FOREST COMPOSITION IN THE JIZERSKE HORY MTS.

Implement of the survey

- Pre-test (June, July)
 - several in-depth interviews ⇒ it is problematic to realize one hour interview with visitors in terrain
- 4 pilot surveys (July, August)
 - around 30 70 respondents in each pilot
- Final surveys (September, October)
 - total of 201 completed questionnaires version 1 with tourist infrastructure assessment
 - total of 312 completed questionnaires version 2 with hypothetical situations

Histogram of the number of trips realized to JH Mts., n = 312

Structure and frequency of visits to JH Mts., n = 312

	Mean	Median	Std. dev.	Minimum	Maximu
Summer – one-day trip	5.85	0.5	11.31	0	90
Summer – more-day trip	1.08	0	2.79	0	24
Summer – days spent on more-day trip	2.97	0	7.27	0	50
Spring - one-day trip	3.75	0	8.52	0	90
Spring - more-day trip	0.68	0	2.33	0	24
Spring - days spent on more-day trip	1.65	0	5.25	0	48
Winter - one-day trip	6.47	0	12.95	0	90
Winter - more-day trip	0.96	0	2.85	0	24
Winter - days spent on more-day trip	2.62	0	6.56	0	48
Autumn - one-day trip	3.90	0	7.44	0	40
Autumn - more-day trip	0.73	0	2.37	0	24
Autumn - days spent on more-day trip	1.87	0	5.40	0	48

The total costs, subjective and objective costs on a trip to JH Mts. (CZK), n = 312

Motives of respondents for visiting JH Mts., n = 312

Rating of the quality of forest ecosystems by respondents in JH Mts, n = 312

The structure of answers on hypothetical questions, in %, n = 312

	N (valid)	increase	equal	decrease	
Change of enjoyment	t				
Spruce	309	0.32	17.15	82.52	
Broad-leaved trees	308	34.09	49.68	16.23	
Natura 2000	309	44.66	55.02	0.32	
Change of number of trips					
Spruce	307	1.30	57.00	41.69	
Broad-leaved trees	299	11.04	83.95	5.02	
Natura 2000	304	17.11	82.89	-	
Entrance fee	310	1.29	74.52	24.19	

Econometric model

Count data – non-negative integer value

Poisson distribution

Negative Binominal distribution

Likelihood function

 $Pr(Y = y) = \frac{e^{-\lambda} \lambda^{y}}{y!} \frac{\lambda}{\lambda} \dots \text{ the expected number of trips} = Var(y_{i}|x_{i})$

$$\lambda_{ij} = \exp(\mathbf{x}_{ij} \,\beta_1 + \mathbf{p}_{ij}\beta_2 + \mathbf{q}_j\beta_3)$$

Maximum likelihood method

 $L = \prod_{n=1}^{n} \frac{e^{-\lambda_n} \lambda_n^{y_n}}{y_n!}$

Model 1: ML estimation of the actual visits, Poisson model, n = 312

Variable	coefficient	standard error	confiden	ce interva
Intercept	2.2535	0.0552	2.1453	2.3610
COSTS	-0.0029	0.0001	-0.0031	-0.0028
AGE	0.0171	0.0009	0.0153	0.0188
ECONOM	0.3265	0.0315	0.2647	0.3883
LENGTH	0.0119	0.0006	0.0108	0.013
Log likelihood		17 763		
CS per ac min max	cess CZ CZI CZI	K 8 054 (US K 7 535 K 8 342	D 366)	

CS per trip CZK 344 (USD 15)

Model 2: ML estimation of the actual and contingent visits, Poisson model, n = 1 248

Variable	coefficient	standard error	confide	nce interval
Intercept	2.2415	0.0291	2.1845	2.2985
COSTS	-0.0028	0	-0.0029	-0.0027
AGE	0.0161	0.0005	0.0152	0.017
ECONOM	0.3933	0.0167	0.3605	0.4261
LENGTH	0.0117	0.0003	0.0111	0.0123
SPRUCE	-0.9524	0.032	-1.0152	-0.8896
Log likelihood		64 386		

CS change per access

CZK 1 574 (USD 71)

CZK 67 (USD 3)

Discussion needed

- Surveying only in September and October 2005
- Opportunity costs of time not included
- $Var(y_i|x_i) > \lambda \implies Negative Binominal distribution$
- # of trips and # of days on trip are positively correlated

Bivariate Poisson needed

 Not all values related to the change of environmental quality are assessed

Thank you for your attention

Jan Melichar

jan.melichar@czp.cuni.cz

Charles University Environment Center http://cozp.cuni.cz

The research on this study was supported by the grant of the Czech Ministry of the Environment: VaV/320/1/03 - External costs of electricity and heat production in Czech conditions and their internalisation methods and the grant of the Czech Ministry of the Agriculture: 1R56014 - Monetary valuation of recreational and aesthetical function of forest in the CR.