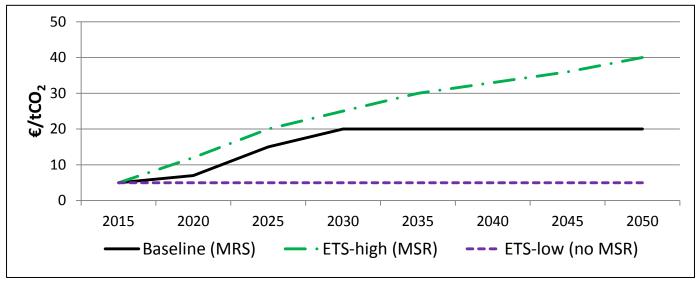


Environment Center Charles University in Prague Impacts of Market Stability Reserve on CO₂ emissions from Czech heat and power sector – TIMES model simulations

Lukáš Rečka <u>lukas.recka@czp.cuni.cz</u> Milan Ščasný

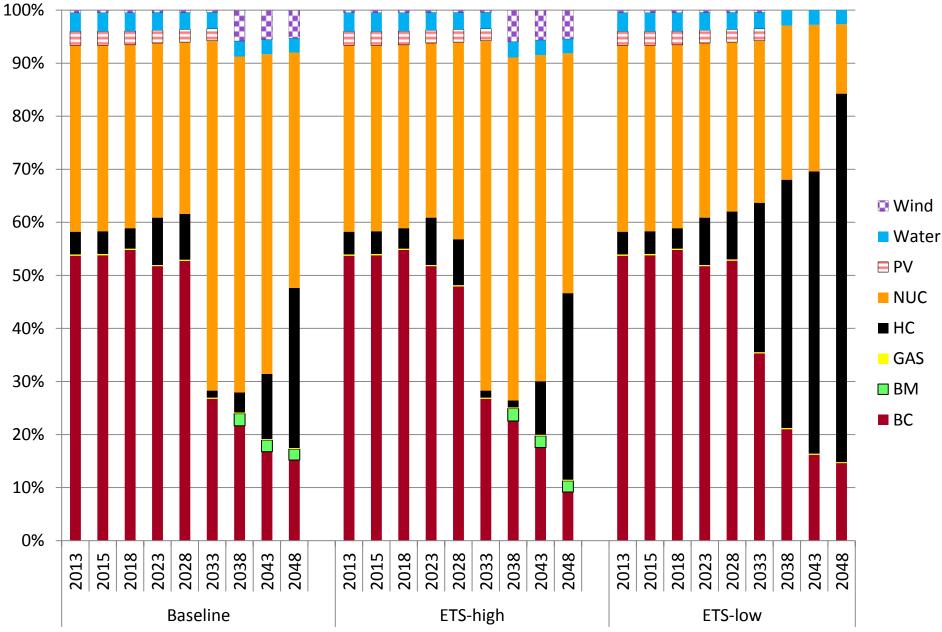
MARKET STABILITY RESERVE: Why, When, How? Prague, 5th May, 2015

TIMES model generator

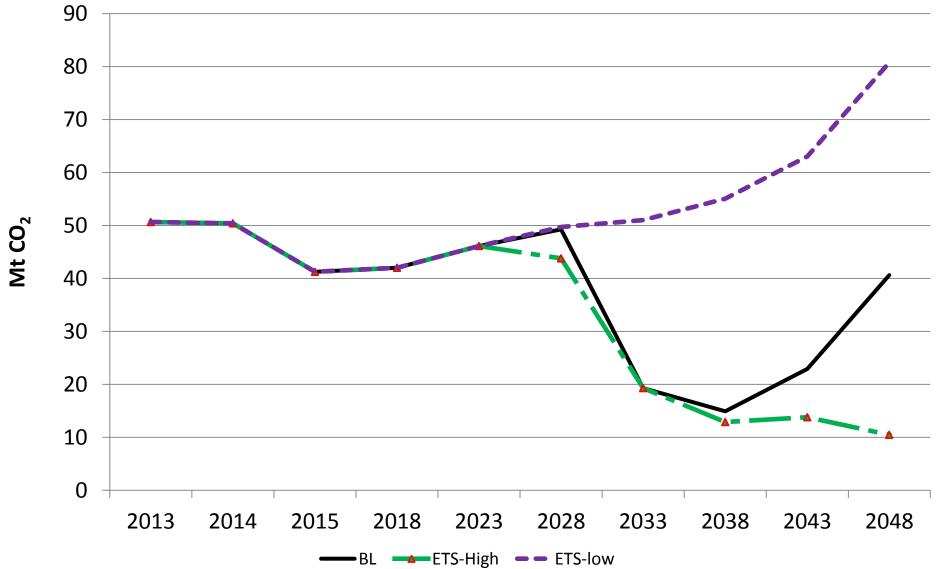

- Assessing impacts within coherent modelling framework on
 - fuel-mix, energy use, and technology-mix
 - emissions (GHGs, SO₂, NOx, PM, NMVOC)
 - investments and total costs
- TIMES (The Integrated MARKAL-EFOM System)
 - pan-European bottom-up technology-rich model generator
 - a part of the IEA-ETSAP (Energy Technology Systems Analysis Program)
 - combines a technical engineering approach and an economic approach
 - linear-programming to produce a least-cost energy system over <u>whole</u> <u>period</u> (i.e. perfect foresight)
 - optimized according to a number of user constraints (availability of fuels, technology ban, emission cap, etc.)
 - Allow assessing impacts of exogenous variables such as RES & non-RES capital costs, fuel costs, discount rate

Model assumptions and data – TIMES-CZ

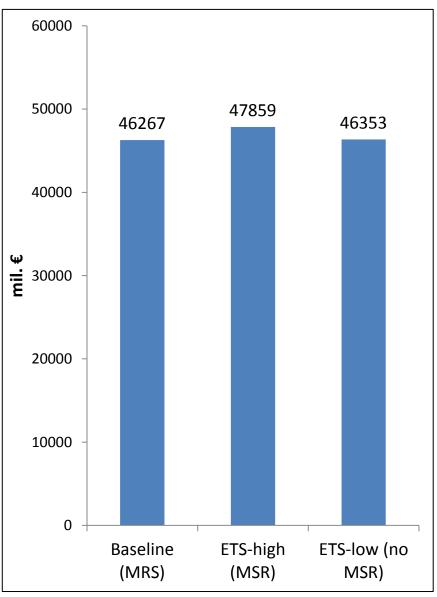
- time horizon 2012-2050
- power and heat generation (92 % of Czech power generation, 114 % of gross domestic demand)
- plant-level data of fuel use, emissions and electricity/heat generated
- reserves of brown coal (within/beyond limits), RES potentials
- baseline prices of fuels (World Energy Outlook 2013)
- capital costs of new technologies based on EPRI (2011), Nuclear cost per kW adjusted according to outcome from the Czech tender
- moderate growth in electricity consumption (up to 1% p.a.) but including export of electricity
- Time resolution:
 - electricity: 12 months, peak, off-peak and mid-load
 - heat: 12 months


Scenarios

EUA prices assumptions



- Derogated allowances taken into account
- Implicit assumptions about MSR
 - Corrections of EU ETS in order to get on expected carbon price pathway: Baseline & ETS-high
 - Lack of price credibility and consistency might have similar effect on investments as very low price of EUA: ETS-low


Share of Electricity production per type of source

CO₂ emission

Total discounted costs till 2050

- Discounted value for the unused portion of technical live of investments, whose technical lives exceed the model's horizon, is subtracted from the total discounted cost.
- Difference of total discounted cost till 2050 is up to 3.5 %

Conclusions

- Price of CO_2 allowance is the most important factor for CO_2 emission reduction
 - 20 €/tCO2 is sufficient price level for reducing emission by 70-80% in 2050, while the current low price of CO2, as in the ETS-low scenario, would lead to 60% increase in CO2 emissions by 2050
 - Under the ETS-low, WIND is not installed, share of NUCLEAR is declining, while HARD COAL is more used
 - Costs till 2050 are 3.5 % higher ETS-high than in Baseline scenario with 20 €/tCO2
 - Redistribution between investment and variable costs depending on EUA price
 - more volatile price may induce higher rate of return (discount rate) → it would penalize investment-more intensive technologies, such as nuclear or RES
 - \rightarrow MSR may support investments into new technologies
- Different technology deployment
 - PV systems and gas turbines are not competitive without subsidies or low gas price
 - WIND turbines are fully installed with constrains on coal extraction and with EUA price €20+/tCO2
- Constraints matter
 - Opening BC reserves would induce investments into BC and CCS (under €20+/tCO2)
 - Putting a ban on new nuclear would induce use of biomass and investments into BC and HC power plants (Recka and Scasny 2012 by MESSAGE)